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Abstract

Median-joining (MJ) was proposed as a method for phylogeographical analysis and is enjoying increasing popularity. Herein,
we evaluate the efficacy of the approach as originally intended. We show that median-joining networks (MJNs) are theoretically
untenable for evolutionary inference, and that confusion has afflicted their use for over 15 years. The approach has two obvious
shortcomings: its reliance on distance-based phenetics (overall similarity instead of character transformations) and the lack of
rooting (no direction or history). Given that evolution involves both change and time, and the absence of rooting removes time
(ancestor–descendant relationships) from the equation, the approach cannot yield defensible evolutionary interpretations. We
also examine the impact of MJ analyses on evolutionary biology via an analysis of citations and conclude that the spread of
MJNs through the literature is difficult to explain, especially given the availability of character-based analyses.
© The Willi Hennig Society 2015.

The rising preeminence of Phylogenetic Systematics runs the

risk of being self defeating, for it is becoming more and more

common for practitioners of other approaches to pay lip-ser-

vice to phylogenetic principles . . .This tendency seems to be

most pronounced when the alternative approaches are of a

mathematical nature or are implemented by computer pro-

grams, and the practice hinders continued development of

truly phylogenetic methods. [Farris et al., 1982, p. 317]

Technological advances in computing and the flood
of molecular data have catapulted research in evolu-
tionary biology in general, and in phylogenetics in par-
ticular, by testing hypotheses through user-friendly
software. However, these advances have also prompted
the proliferation of sophisticated-looking analyses
without any consideration of the philosophy behind
the methods (Grant et al., 2003). In this context, the
median-joining (MJ) approach has been implemented
for over 15 years. The application of median-joining
networks (MJNs) to evolutionary studies has grown
dramatically, and there is no indication that this trend

will wane in the foreseeable future (Fig. 1). As is nec-
essary for many widely accepted approaches and con-
cepts, such as the biological species concept, it is
important to re-evaluate the assumptions and limita-
tions of MJ. Herein, we review its theoretical founda-
tions, current applications and the associated
terminology. We discover that its implementation has
been plagued by confusion since its conception. The
approach overlooks basic principles of both evolution-
ary biology and phylogenetic analysis, and even the
underlying prerequisites of MJ itself.
Bandelt et al. (1999) (hereinafter BEA99) introduced

MJ as a method for inferring intraspecific phylogenies,
stating that “[r]econstructing phylogenies from
intraspecific data. . .is often a challenging task because
of large sample sizes and small genetic distances
between individuals” (emphasis added). They argued
further that “[t]he resulting multitude of plausible trees
is best expressed by a network which displays alterna-
tive potential evolutionary paths in the form of cycles”
[p. 37 (abstract), emphasis added]. MJ constructs such
networks. Although the non-evolutionary essence of
MJ analysis was summarized exceptionally well in
the two consecutive, introductory sentences, MJNs
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continue to persist and flourish in the literature. There-
fore, it is desirable to address the most conspicuous
drawbacks of this method: its distance-based approach
and the absence of rooting.

Theoretical overview

Phylogenetic networks: rooting matters

A phylogenetic tree is a directed (rooted) branching
diagram that represents the hypothesized relationships
among the organisms under study. Unlike undirected
(unrooted) branching diagrams (i.e. networks; but see
below), historical statements must be made based on
trees (Wheeler et al., 2006) because outgroup compar-
ison roots the ingroup topology and polarizes charac-
ter transformations (Farris, 1972, 1982), thereby
converting a non-evolutionary network into an evolu-
tionary hypothesis. Although both trees and networks
are cladograms (Farris, 1970)—diagrams with a
branching pattern—that depict hypothesized relation-
ships, the evolutionary history of the evidence (e.g.
DNA sequences) and the organisms can only be
inferred by ordering terminals, explaining characters
and testing hypotheses on trees. However, because of
the bifurcating pattern of phylogenetic trees (two, and
only two, descendant branches arise from a single
ancestral branch), reticulation events derived from
non-vertical inheritance processes such as hybridiza-
tion, recombination and horizontal gene transfer can-
not be visualized. Alternatively, networks are used
frequently to represent such events.
The concept of a phylogenetic network has been

used indiscriminately in the literature. In mathematics
and computer science (specifically, in graph theory), a
“network” is an undirected cyclical graph (UCG),

which is nothing more than an unrooted branching
diagram with reticulation. This differs from a “tree”,
which is a directed acyclical graph (DAG), or a rooted
branching diagram without reticulation (Wheeler
et al., 2006; Wheeler, 2012). In UCGs, a cycle is
formed by a path over edges from a vertex back to
itself where each intermediate edge between vertices is
visited once. In contrast, cycles cannot be formed in
DAGs because there is only one unique path between
two different vertices, i.e. the edges between vertices
can be traversed in one direction only. For vertex v in
graph G, the degree is the number of edges in G that
contains v. In DAGs, in-degree and out-degree edges
can be specified, and their sum is the degree. For
instance, in Fig. 2 the degree of vertex v4 is 3, its in-
degree and out-degree being 1 and 2, respectively.
Note that trees are connected graphs because there are
no vertices with degree 0 (all vertices are visited by a
path over edges). They are composed of three types of
vertices: the root (in-degree 0 and out-degree 2), the
internal vertices (in-degree 1 and out-degree 2) and the
leaves or terminals (in-degree 1 and out-degree 0)
(Chung, 1986; Moret et al., 2004; Wheeler, 2012,
2014).
In a phylogenetic context, trees are basically a series

of ancestor–descendant statements, as well as represen-
tations of sister-group relationships. Accordingly, the
nodes (= vertices) signify both sister groups and ances-
tral conditions, and the branches (= edges) that con-
nect them contain the character transformations
between ancestors and descendants (Nelson, cited in
Eldredge and Cracraft, 1980; Wheeler, 2012). Consid-
ering that “phylogenetics” refers to the evolutionary
history of sets of organisms, and that direction
through rooting is imperative to allow evolutionary
inference, a “phylogenetic network” is then defined as
a DAG with at least one node with in-degree 2 and
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Fig. 1. Absolute number of citations of Bandelt et al. (1999) between 1999 and (December) 2014 (ISI Web of Science).
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out-degree 1 (Moret et al., 2004; Wheeler, 2012;
Fig. 2: v5), which denotes a reticulation event. In other
words, a phylogenetic network is a tree with directed
reticulate branches (Wheeler, 2014). By comparison,
an MJN is an UCG1 (Fig. 3; “cyclical evolution”
occurs) or an unrooted2 branching diagram with retic-
ulation (= network only), and is therefore not a phylo-
genetic network as introduced by BEA99 and as often
understood. Considering these criteria, the statistical
parsimony network (Templeton et al., 1992), among
other UCGs, is also a non-evolutionary network. Con-
versely, hybridization (Maddison, 1997; Linder and
Rieseberg, 2004), recombination (Griffiths and Marjo-
ram, 1996; Song and Hein, 2005) and duplication-loss-
transfer (DLT) (Delwiche and Palmer, 1996; Planet
et al., 2003) networks can be considered as phyloge-
netic, evolutionary networks. Phyletic group-types for
phylogenetic networks, in addition to the Hennigian
mono-, para- and polyphyletic, are defined by Wheeler
(2014).

The (distance-based) MJ method

Operational details of the MJN algorithm are avail-
able (BEA99; Huson et al., 2010). Here, we focus on
its phenetic nature. Unlike its preceding reduced med-

ian network (Bandelt et al., 1995), MJ can handle
large datasets, as well as multistate data, such as
amino acid sequences, very rapidly. In an attempt to
create an intermediate-sized network, MJ combines the
minimum spanning network and quasi-median net-
work algorithms (the former produces too few nodes
associated with a multiple alignment of sequences, and
the latter produces too many; Huson et al., 2010).
BEA99 (p. 37) developed the following reasoning:

The MJ method begins with the minimum spanning trees, all

combined within a single (reticulate) network. Aiming at par-

simony, we subsequently add a few consensus sequences (i.e.,

median vectors, or Steiner points) of three mutually close

sequences at a time. These median vectors can be biologically

interpreted as possibly extant unsampled sequences or extinct

ancestral sequences. The median operation, also referred to as

“Steinerization” in mathematics (in which the most parsimo-

nious realizations of MP trees are called Steiner trees; see

Hwang et al., 1992), is basic to all fast MP heuristic algo-

rithms, although it is typically applied in a very restricted

(“greedy”) manner in order to arrive at a single tree (Farris,

1970). In contrast, the unconstrained use of the median oper-

ation eventually generates the so-called full quasimedian net-

work. . ., which normally harbors all optimal trees, as well as

numerous suboptimal trees. . .With MJ, we take care that at

each stage only those median vectors which have a good

chance of appearing as branching nodes in an MP tree are

generated by considering only triplets of sequences for which

one sequence is linked to the other two in the network under

processing. An additional ranking of these candidate triplets

according to a distance score (as proposed by Tateno, 1990)

allows further refinement of the triplet selection. After each

round of median generation, the process restarts with the thus

enlarged set of sequences.

Minimum spanning network. The MJ method starts
with the generation of a minimum spanning network
(BEA99). For a given set, S, of DNA sequences (s1, s2,
s3. . ., si), the algorithm requires a multiple sequence
alignment, A, with infrequent ambiguous states and
with no recombination. The data are the basis of a
distance matrix, D, on S. To calculate the distance, d,
between two sequences in A, the algorithm employs
the Hamming distance, H, which is the number of
differences between equal-length sequences [or to
define D, then H(sx, sy) in A]. Distance values between
sequences are then increasingly ordered (d1 < d2 < d3
<. . .< di). If character state differences between
sequences (not “character changes” as claimed by
BEA99, p. 39) are unequally weighted, then d(sx, sy) in
A to define D is given by the sum of weights, x, of all
different states between sx and sy (Fig. 4a), or

d sx; sy
� � ¼

X
xðsx; syi-thÞ ;

where i-th denotes any position at which sx and sy dif-
fer. This “weighted Hamming distance” of MJ
(BEA99, p. 39) is better termed an “unequally

Fig. 2. A phylogenetic network. Note the absence of cycles due to
the direction of the edges (arrows). A reticulation event is repre-
sented by a node with in-degree 2 and out-degree 1 (v5).

1

Sometimes MJ analysis results in an undirected acyclical graph

(i.e. an undirected, simple graph; e.g. Gangloff et al., 2013).
2

Although the program NETWORK (fluxus-engineering.com;

BEA99) offers the option to “root the [MJ] network” to determine

“the ancestral node” by “comparing the network nodes with suitable

outgroups” (p. 29, user guide, fluxus-engineering.com), which has

been implemented in some studies (e.g. Sakaguchi et al., 2012), this

procedure merely links the “outgroup” sequence (i.e. non-conspeci-

fic) to the most similar haplotype of the already produced “ingroup”

network. Hence, it neither roots the ingroup topology nor polarizes

character transformations. The direct addition of an outgroup

sequence into the network construction process (i.e. not through the

rooting option) is likely to yield unresolved and extremely confusing

networks with complex 3-D cycles and multiple median vectors (our

unpublished analyses).
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weighted Hamming distance”. It would have been
more precise because in the Hamming distance, differ-
ences are equally weighted. Ambiguous states are spec-
ified via a comparison “with the definite states of the
other minimally distant sequences”, and arbitrarily
assigned by setting “the most common definite state of
these sequences” (BEA99, p. 39).
As for the minimum spanning network itself, con-

sider the graph G = (V, E), where V represents the set
of vertices (nodes), v, therefore V = S in this case, and
E is the set of edges (branches), e, containing all possi-
ble edges between any two nodes in V. In a spanning
tree of G, all vertices are connected, and, as with trees
in general, cycles cannot be formed. Note that the
usage of “tree” in this context (and in mathematics)
refers to a connected—not rooted—graph. If the edges
have weights [x(e)] that reflect D, i.e. x(e) = d(sx, sy)

for every e in E, then x(G) is given by the sum of the
weights of all edges in G associated with A [G = (V, E,
x)]; i.e. G is a “weighted graph” [Wheeler (2012), or a
“distance graph” sensu Huson et al. (2010)]. In this
case, the minimum spanning tree for G is the spanning
tree (T) that connects all vertices of G and that mini-
mizes the sum of x(e) given by

xðTÞ ¼
X

e in TxðeÞ

(Huson et al., 2010; Fig. 4, e.g. b). In other words, it
is the spanning tree whose weight is minimal (Wheeler,
2012).
Kruskal’s (1956) and Prim’s (1957) algorithms can

construct minimum spanning trees. MJ analysis is
based on the former. It can obtain different minimum
spanning trees because it processes all edges that have

Fig. 4. The distance matrix D on S = {s1, s2, s3. . ., si} shown in (a) gives rise to three different minimum spanning trees (networks), shown in
(b), (c) and (d), respectively. The corresponding minimum spanning (super)network N is shown in (e). Modified from Huson et al. (2010).

Fig. 3. A median-joining network. Note the presence of cycles due to the absence of direction (square). Each circle represents a unique haplo-
type where the diameter is proportional to the number of DNA sequences represented. Integers on each edge denote the position of nucleotides
within the sequence that differ between haplotypes. Small solid circles indicate median vectors.
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the same weight consecutively in some arbitrary order.
This procedure serves as an implicit “tie-breaking”
rule. Thus, different input orders can produce differ-
ent, but equally optimal solutions (Fig. 4b–d; Kruskal,
1956; Huson et al., 2010, p. 229). The minimum span-
ning network, N, for A is the subgraph of the weighted
graph G whose E is given by the union of the E of all
minimum spanning trees generated (Huson et al.,
2010; Fig. 4e). Simply stated, N is the union of all
minimum spanning trees by dropping the tie-breaking
rule of Kruskal’s algorithm (BEA99). Cycles may be
created initially because equally optimal solutions can
be included and displayed simultaneously (Fig. 4e: tri-
angle).
The tolerance parameter D (e in BEA99) can be

specified to restrict the distance values of accepted
weighted edges into N. Naturally, parameter D in N is,
by definition, = 0. If, instead, D is increased (i.e. >0),
the distance criterion will be relaxed and thus N will
also contain all of those heavier edges of G whose
weights do not surpass the heaviest weight in N by
more than D. The resulting graph is known as the
relaxed minimum spanning network (ND) (Huson et al.,
2010). In practice, however, parameter D is usually set
= 0. The obtained minimum spanning network is the
starting point for the last process to build the final
MJN, the addition of median vectors.

The MJ algorithm and the resulting MJN. Based on
the quasi-median operation (Huson et al., 2010), but
guided by the minimum spanning network to avoid
the full quasi-median resolution, the MJ algorithm
produces “additional. . .sequence types” (BEA99) from
existing ones. Specifically, it generates consensus
sequences. The addition of extra vertices and
associated weighted edges to the minimum spanning
trees may further reduce the overall weight of the
graph (Wheeler, 2012), a process known as
Steinerization. User-specified D affects the construction
of the minimum spanning network, and it governs the
generation of median vectors (i.e. the additional
sequences). Increasing D widens the search for
potential new median vectors. However, because this
parameter is usually set to zero, only minimal cost
connections (i.e. vertices connected by minimal
weighted edges) are considered. Basically, triplets of
sequence types, where there are at least two feasible
edges among them, are used to generate a median
vector (or Steiner point; Fig. 3: small solid circles).
These median vectors are added to the original pool of
sequence-types, and the minimum spanning network is
then recalculated with the newly enlarged set of
sequences. Iterations occur until no further median
vectors can be generated. Consequently, cycles are
formed. Either the original cycles may be modified or
new ones may be produced (Fig. 3: square). The final

product (the MJN) shows all feasible links in minimal
cost connections plus D at most (Fig. 3).

Discussion and implications. Although BEA99
devoted most of their attention to median generation,
the construction of minimum spanning networks is
central to the MJ method. Therefore, the construction
of MJNs is based entirely on a measure of similarity
of DNA sequences. The reliance on a distance-based
technique was described operationally and mentioned
recurrently throughout their paper, but BEA99 neither
addressed this topic explicitly nor discussed its
implications. This suggests that they favoured
similarity-based, phenetic methods, which are
unquestionably the most criticized approaches by
(most) systematists. Alternatively, they may have
failed to distinguish similarity from character
transformation as the basis for delimiting groups. This
oversight has led some phylogeneticists to mistakenly
use phenetic approaches to infer phylogenetic
relationships (Grant and Kluge, 2004). Subtle, but
significant, confusion supports this possibility (BEA99,
p. 39, italics added):

The simplest way to obtain a distance measure between two

sequences is to count the number of character differences (the

“Hamming distance”). As a refinement, we may also weight

character changes, albeit only in a symmetrical fashion. . .

In one way or another, all phylogenetic methods [max-
imum parsimony (MP), maximum likelihood and
Bayesian inference] aim to minimize character trans-
formations, but assumptions about character evolution
employed in MJ analysis rely on similarity alone. Like-
wise, due to the spread of this method, MJ practition-
ers have been led to the assumption that a cluster in
the final network is a group of closely related subjects,
but these relationships are based on overall similarity
of sequences, which is the operational basis of phenet-
ics. Indeed, even if the MJ method employed outgroup
rooting, it would behave like phenetic clustering.
Unfortunately, this type of method is used frequently.
Median generation, as interpreted by BEA99, has its

own problems. In an attempt to highlight the benefits
of their method, they appealed to parsimony as a prin-
ciple of MJ analysis [p. 37 (abstract)]:

We present a method . . . for constructing networks . . . that

combines features of Kruskal’s algorithm for finding mini-

mum spanning trees by favoring short connections, and Far-

ris’s maximum-parsimony (MP) heuristic algorithm, which

sequentially adds new vertices called “median vectors”, except

that our MJ method does not resolve ties.

BEA99 continued (p. 37):

Aiming at parsimony . . . [t]he median operation, . . . (in which

the most parsimonious realizations of MP trees are called

Steiner trees), . . . is basic to all fast MP heuristic algorithms,

although it is typically applied in a very restricted (“greedy”)
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manner in order to arrive at a single tree (Farris, 1970). . .
With MJ, we take care that at each stage only those median

vectors which have a good chance of appearing as branching

nodes in an MP tree are generated by considering only triplets

of sequences for which one sequence is linked to the other

two in the network under processing.

Likewise, they justified the addition of median vectors
as follows (p. 38):

[T]he minimum spanning network is of little direct use for

representing genetic data, since in general a minimum span-

ning tree is far from being most parsimonious. It serves, how-

ever, as a good point of departure in each recursive step of

our MJ network construction for generating additional

inferred sequence types which reduce tree length.

The interpretation of MP by BEA99 differed from
that of Farris (1970). Invoking principles of parsimony
does not validate a phenetic technique as being a phy-
logenetic method, and the best Steiner trees are not
the most parsimonious trees. Again, “tree” in the MJ
context refers to a connected—not rooted—graph, or
network. The generation of median vectors and the
subsequent addition of extra vertices to the minimum
spanning tree(s) may reduce the overall weight of the
graph(s), which is then referred to as a Steiner tree(s).
Consequently, the overall weight of the minimum
spanning networks and MJNs may also be reduced.
This Steinerization process in MJ analysis serves to
obtain MP, and the resulting best (unrooted) Steiner
tree is what BEA99 assumed to be the most parsimo-
nious tree. Although reducing the weight of graphs
could constitute a form of Occam’s Razor, this form
of MP does not empower MJ.
A Prim Network is an unrooted, connected graph in

which the set of nodes (i.e. vertices) is identical to that
of observed taxa (operational taxonomic units, OTUs),
in this case DNA sequences. Thus, no median nodes
(vectors) or hypothetical taxonomic units (HTUs) are
constructed (Farris, 1970). This immediately leads to
what is usually referred to as a Steiner-type problem
in systematics: extant taxa cannot be ancestors of
other extant taxa (Wheeler, 2012). Wagner or Steiner
networks (also undirected, connected graphs), in turn,
allow for the addition of extra vertices (i.e. HTUs or
Steiner points) and associated edges. However, the
Steiner problem expands on them because OTUs and
HTUs are placed indiscriminately on the network in
some order that is determined by a given cost function
and the absence of direction. In sharp contrast, a
(rooted) Steiner tree is a minimum cost tree with a set
of terminal and internal vertices (or Steiner points),
and is therefore a Wagner tree (Farris, 1970). In Wag-
ner trees, OTUs are confined to terminal nodes (tips
or leaves) and HTUs are placed at inner nodes. Thus,
Wagner or Steiner trees overcome the Steiner problem
(Platnick, 1977). Under this scenario, all “trees” in MJ
are actually Prim or Steiner networks. Thus, minimum

spanning networks are best defined as “minimum
spanning super-networks” (Fig. 4e). Although
BEA99’s interpretation of MP goes beyond the theo-
retical underpinnings of network- and tree-building
differences and implications, they demark a relevant
starting point for understanding the essential distinc-
tion between median construction of the MJ algorithm
and that of Farris (1970): character optimization.
The Wagner method (Farris, 1970; additive charac-

ter optimization) is a modified version of the original
Wagner procedure (Wagner, 1961). It builds a single
branching diagram by adding OTUs sequentially (one
at a time) in an arbitrary order. However, the optimal
position on a growing tree is determined by choosing
the immediately best option. Specifically applied for
additive characters, the algorithm finds one optimiza-
tion, but not all, as pointed out later by Farris (1983)
and Goloboff (1993). More parsimonious solutions are
found by optimizing novel character combinations
independently to inner nodes, creating HTUs. The
resulting tree is commonly used as a starting point for
several other heuristics (e.g. random addition
sequences, RAS) to find more parsimonious solutions
(Wheeler et al., 2006; Wheeler, 2012). Different
approaches have also been proposed to find all possi-
ble optimizations of characters (e.g. Goloboff, 1993),
but their description is beyond the scope of this paper.
The simple Wagner algorithm (Farris, 1970), which
BEA99 made reference to when claiming MP for MJ
analysis, generates medians (HTUs) based on the char-
acter states of the OTUs and other HTUs. Initially,
the addition and placement of OTUs is determined by
the advancement index, which establishes a rank order,
and the interval distance formula, a relation on the
character-states between HTUs and OTUs. New
HTUs to connect OTUs to the branching diagram are
formed through the median-state property, which spec-
ifies optimal HTUs one character-state at a time (Far-
ris, 1970). The Wagner method uses patristic distances
(character-state transformations, number of steps, tree-
length) of a phylogenetic hypothesis (cladogram) to
explain the observed character variation (Kluge and
Grant, 2006; also see Farris, 1967), and not similarity
or phenetic differences. Whereas the Wagner algorithm
aims to minimize character transformations (i.e. a
character-based method), the MJ algorithm is gov-
erned completely by similarity. Thus, Farris’ algorithm
and the MJ method are similar only in their sequential
addition of new vertices to a diagram under construc-
tion (i.e. a graphic procedure from opposite
approaches).
BEA99 stressed that median vectors can be inter-

preted biologically as existing unsampled or extinct
ancestral sequences (i.e. they can represent missing
intermediates; Fig. 3). However, a median vector in an
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MJ analysis is a majority-consensus-generated
sequence and a mathematically drawn point in the
final MJN that connects a triplet of sequences. The
resulting “evolutionary paths in the form of cycles”
(BEA99, p. 37) merely illustrates the failure of the
algorithm to choose between alternative, equally opti-
mal connections due to the modification of Kruskal’s
algorithm. Consequently, a cycle represents an analyti-
cal artefact rather than an evolutionary scenario (Sal-
zburger et al., 2011).
Finally, BEA99 introduced a new meaning for

homoplasy (p. 37): “[t]he MJ method. . .can be
adjusted to the level of homoplasy by setting a [toler-
ance] parameter e [D]”, because (p. 39),

In practice, the quasimedian network generated by the given

data may be somewhat large due to homoplasy, such that

only a portion should be heuristically constructed by carefully

selecting triplets of sequences for median generation.

By homoplasy, BEA99 meant the multitude of nodes
generated by the full quasimedian resolution, which
can be constrained by implementing the MJ operation.
The MJ analysis, like any other phenetic (not to men-
tion undirected) method, does not recognize either
homoplasy or homology, and it does not distinguish
between them.

MJNs in the literature

To evaluate the impact of the MJ analysis on evolu-
tionary biology, we conducted a meta-analysis of stud-
ies that employed the MJ method to infer evolutionary
relationships among organisms. Over the last 15 years,
more than 3000 papers have cited BEA99 [ISI Web of
Science; absolute number of citations (December,
2014)]. The number of citations increased exponen-
tially from 118 (<5%) between 1999 and 2003 to over
2023 (>55%) between 2010 and 2014 (Fig. 1). We fur-
ther examined an initial subset of 376 randomly cho-
sen articles between 2006 (first year with more than
100 citations) and 2014 and without consideration of
taxonomic group. Theoretical papers that did not
employ the method were filtered out. Recent applica-
tions of MJNs included population structure analysis
(e.g. Escobar-Guti�errez et al., 2013), visualization of
haplotype diversity (e.g. McCracken et al., 2013) and
relationships (e.g. Castelin et al., 2012), complemen-
tary information of phylogenetic analyses (i.e. when
phylogenetic trees could not provide “desired resolu-
tion”; e.g. Kl€utsch et al., 2012) and phylogenetic infer-
ence. We further evaluated the last-named application,
although most discoveries also apply equally to the
former three usages.
Among the 376 papers, 161 studies (42.8%) used

MJNs primarily to infer “phylogenetic” (e.g. Zhu

et al., 2013), “evolutionary” (e.g. Turchetto et al.,
2014) or “genealogical” (e.g. Amaral et al., 2014) rela-
tionships, as stated in the Materials and Methods sec-
tion of the articles. Although MJNs were mostly used
to infer phylogenies based on intraspecific haplotypes
(e.g. Fan et al., 2013), the MJ method was also used
to infer interspecific relationships (e.g. Zou et al.,
2013). Additional inappropriate use of terms was com-
mon in the literature.
Authors often misinterpreted similar haplotypes

grouped through MJN as “clades” (e.g. Cunha et al.,
2012), and the MJ product as “cladograms” (e.g. Cao
et al., 2013). Clades are monophyletic groups, i.e. an
ancestor and all its descendants, which is represented
on a rooted cladogram by all terminals arising from a
single node (Wheeler et al., 2006). A grouping pro-
duced by MJ is simply a crowd of haplotypes that are
similar to each other (Fig. 3). Hence, it is more appro-
priate to refer to them as “clusters” or “haplogroups”.
Similarly, MJNs should be termed “unrooted net-
works” or “phenograms” only.
Confusion between MJNs and MP trees exist. For

example, Malyarchuk et al. (2014) reported that opti-
mal, shortest phylogenetic trees were reconstructed
using the MP calculation in optional post-processing
implemented in NETWORK (Polzin and Danesh-
mand, 2003). Unfortunately, this is untrue. MP calcu-
lations of NETWORK do not produce MP trees, but
rather they identify median vectors and edges pro-
duced in a full MJN that are not contained in the
shortest graphs, and switches them off in the final
display (Fig. 3). Sometimes authors included MJ
analyses along with traditional phylogenetic tree-
reconstruction methods. For example, Bataille et al.
(2013, p. 4199) inferred phylogenetic relationships
using “maximum parsimony, maximum-likelihood,
Bayesian inference, and Median-Joining Network
methods”.
One of the prerequisites for MJ analysis is recombi-

nation-free input data (BEA99). MJNs are not
intended to detect recombination events and, indeed,
such would be impossible. Notwithstanding, MJ was
used to “infer recombination amongst haplotypes”
(Arnott et al., 2013, p. 4).
Comparative studies including MJNs are over-inter-

preted in many cases to justify the use of the method.
Cassens et al. (2003, 2005) and Wooley et al. (2008)
examined the relative performance of MJNs compared
with several other approaches. These have served as
reference studies. Cassens et al. (2003) stated that the
MJ method yielded the “best genealogy” because it
required the least number of mutations to explain the
data when compared with other unrooted networks.
Furthermore, Cassens et al. (2005) suggested the
MJ approach worked well when haplotypes were rela-
tively distant, yet it occasionally failed to reconstruct
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the “correct topology”. In contrast, Wooley et al.
(2008) reported that MJNs performed well when the
substitution rate was low, but performed significantly
less accurately when the substitution rate was high.
Some authors exaggerated the findings from Cassens
et al. (2003) by stating that MJNs have been shown to
yield “the best-resolved genealogies relative to other
rooting and network procedures” (Lin et al., 2012, p.
e36334; Zhou et al., 2011, p. 331). Paup�erio et al.
(2012), p. 6019) also justified use of MJNs by referring
to Cassens et al. (2005) and Wooley et al. (2008) and
stating “in the analysis of closely related sequences, net-
works are useful tools as they can provide more informa-
tion than a strict consensus tree and still present a reliable
estimate of the true genealogy” (emphasis added).

Conclusions

Other than fast computation and very attractive
graphics, MJNs harbour no virtue for phylogenetic
inference. MJNs are distance-based, unrooted branch-
ing diagrams with cycles that say nothing about the
evolutionary history due to the absence of direction.
MJ was introduced in 1999 and, in contrast to most
scientific ideas, its application has spread rapidly
through copying the methods of others, and, unfortu-
nately, with little further scrutiny. We hope that the
theoretical arguments presented here can reverse this
trend.
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